
CISC 1115: Introduction to
Programming Using Java

Summer 2025 Prep Workshop

But First: Connecting to BC WiFi
● In order to use the Brooklyn College wireless network, you

must follow these steps:

● Windows PC:
○ Download & Install the SecureW2 Program
○ Find the network name (SSID): BC-WiFi and connect to it
○ Configure through the W2 Program by putting in your

username (EMPL ID) and Password* (FLMM/DD/YY)

● ios/macOS:
○ Find the network name (SSID): BC-WiFi and connect to it
○ Configure it by putting in your username (EMPL ID) and

Password* (FLMM/DD/YY)

https://drive.google.com/file/d/1pet1H-RVn78c5oAVXxbsKTbLXN_GiXZ8/view

Introduction to Java01
Downloading and Installing the JDK02
Writing Your First Java Program (Part 1 - Using the CLI)03
Introduction to IDEs04
Writing Your First Java Program (Part 2 - Using the IDE)05

06 Overview and Next Steps

Itinerary

Introduction to java
01

What is Java?
● Java is a high-level, class-based, popular

object-oriented programming language, created in 1995.
● It is owned by Oracle, and more than 3 billion devices

run Java.
● The rules and syntax of Java are based on the C and C++

languages.
● It is used for:

○ Mobile applications (specially Android apps)
○ Desktop and Web applications
○ Web servers and application servers
○ Games
○ Database connection
○ And much, much more!

Why use Java?
● Java works on different platforms (Windows, Mac, Linux,

Raspberry Pi, etc.)
● It is one of the most popular programming languages in the

world
● It has a large demand in the current job market
● It is easy to learn and simple to use
● It is open-source and free
● It is secure, fast and powerful
● It has huge community support (tens of millions of developers)
● Java is an object oriented language which gives a clear

structure to programs and allows code to be reused, lowering
development costs

● As Java is close to C++ and C#, it makes it easy for
programmers to switch to Java or vice versa

Getting Started With Java
● To create an application using Java, you will need:

○ to download and install the Java Development Kit (JDK),
which is available for Windows, macOS, and Linux.

○ A command-line interface (CLI) on your computer that
allows you to create and delete files, run programs,
and navigate through folders and files (On a Mac, it's
called Terminal, and on Windows, it's Command Prompt)
OR (preferably) an integrated development environment
(IDE) - a software application that helps programmers
develop software code efficiently by combining
capabilities such as software editing, building,
testing, and packaging in an easy-to-use application,
such as Eclipse, NetBeans, IntelliJ, DrJava, etc.

Downloading and Installing the JDK
(Java Development Kit)

02

What is the JDK?
● The Java Software Development Kit (JDK) is a set of tools that

are used to develop Java applications. It includes everything
you need to compile, debug, and run Java programs.

● The JDK is an essential tool for Java programmers as it
provides the necessary libraries, executables, and tools to
develop Java applications.

● It includes:
○ the Java Runtime Environment (JRE)
○ compiler (javac)
○ interpreter (java)
○ and other tools needed for Java development

● The JDK is one of three core technology packages used in Java
programming, along with the JVM (Java Virtual Machine) and the
aforementioned JRE.

● It's important to differentiate between these three technologies
and understand how they're connected:

○ The JVM is the runtime that hosts running programs.
○ The JRE is the on-disk part of Java that creates the JVM

and loads programs into them.
○ The JDK provides the tools necessary to write Java

programs that can be executed and run by the JVM and JRE.
● Developers new to Java often confuse the Java Development Kit

and the Java Runtime Environment. The distinction is that the
JDK is a package of tools for developing Java-based software,
whereas the JRE is a package of tools for running Java code.

What is the JDK?

The figure below shows how the JDK fits into the Java application
development lifecycle:

Downloading the JDK
● The Oracle corporations own the current Java, and now it is

commercially available. Yet, there is still a free java
version available, which is called OpenJDK.

● The current Java JDK version from Oracle corporation (as of
March 2025) is the JDK 24.

● JDK 22 binaries are free to use in production and free to
redistribute, at no cost, under the Oracle No-Fee Terms and
Conditions (NFTC).

● JDK 24 will receive updates under these terms, until September
2025, when it will be superseded by JDK 25. (So you may need
to update in the future)

● The JDK can be installed on the following Platforms:
○ Microsoft Windows
○ Linux
○ macOS

Downloading the JDK (Windows ver.)
● The very first step is to download the Oracle Java Development

Kit (JDK) from the Official Oracle Website.
● For that, Head over to the Official Website:

https://www.oracle.com/java/technologies/downloads/

● You need to identify your system specifications to choose the
Product/file description. The website will contain the latest
version for your corresponding system.

● We will be downloading the latest x64 Installer of Java SE
Development Kit 24.

● After the download is complete, proceed to install the JDK by
following the bootstrapped steps.

https://www.oracle.com/in/java/technologies/downloads/#jdk22-windows

Downloading the JDK (Windows ver.)
● After the installation is complete, we have to configure

environment variables to notify the system about the directory in
which JDK files are located.

● Proceed to C:\Program Files\Java\jdk-{YOUR_JDK_VERSION}\bin
(replace {-} with your JDK version) (this will serve as our path
address)

● To set the Environment Variables, you need to search Environment
Variables in the Task Bar and click on “Edit the system
environment variables”.

● Under the Advanced section, Click on “Environment Variables”.
● Under System variables, select the “Path” variable and click on

“Edit”. Click on “New” then paste the Path Address. Click on “OK”.
● Now, in the Environment Variables dialogue, under System

variables, click on “New” and then under Variable name: JAVA_HOME
and Variable value: paste address i.e. C:\Program
Files\Java\jdk-{YOUR_JDK_VERSION}. Click on OK => OK => OK.

Downloading the JDK (Windows ver.)
● Now we can check the Java version installed, open Command Prompt

and enter the following commands:

● You should see the Java version installed, i.e. java version “”

● Congratulations! You have installed the JDK!

Downloading the JDK (macOS ver.)
● We will install the JDK similarly as we did on Windows only using

the macOS equivalent.
● For Mac, we’ll be downloading the latest x64 DMG Installer of Java

SE Development Kit 24.
● After the download is complete, proceed to install the JDK by

following the bootstrapped steps.

● Now to configure, we have to open the terminal and pass the
following commands. To find the Location of the JAVA_HOME, run the
following command (substituting the version i.e. -v24) :

● We have to set this output as our JAVA_HOME Environment Variable.
You can use any command or code editor to edit the file, here we
are using VS Code (but you can use any text editor (nano, vi,
etc.)):

● At the very bottom, we have to export the path we obtained earlier
i.e.

Downloading the JDK (macOS ver.)

● Now we have to refresh the environment file by using this
command:

● And echo the JAVA_HOME variable:

Downloading the JDK (macOS ver.)

● Now we can check the Java version installed, in the terminal,
enter the following commands:

● You should see the Java version installed,
i.e. java version “”

● Congratulations! You have installed the JDK!

Downloading the JDK (macOS ver.)

Writing Your First Java Program
(Part 1 - Using the CLI)

03

The Command-line Interface
● When you are starting programming, it may be simpler to use a

command-line interface (CLI) for compiling/running.
● You can write Java programs with any text editor (program that

lets you edit standard ASCII text files) saving your file
under a .java extension.

● Unlike C++ programs, but like Scala programs, Java programs
don't compile to code that can be executed directly. Instead
they compile to “bytecode” (.class files) meant to be executed
by a Java virtual machine (JVM).

Writing Our First Program
● Once you have verified that Java is properly installed on your

computer, we can get a simple program running with just a text
editor and a command-line interface (CLI) – On a Mac, it's
called Terminal, and on Windows, it's Command Prompt

● We break the process of programming in Java into three steps:
a. Create the program by typing it into a text editor and

saving it to a file named, HelloWorld.java.
b. Compile it by typing "javac HelloWorld.java" in the

command-line window.
c. Execute (or run) it by typing "java HelloWorld" in the

command-line window.
● The first step creates the program; the second translates it

into a language more suitable for machine execution (and puts
the result in a file named HelloWorld.class); the third
actually runs the program.

Writing Our First Program
● Creating a Java program – A program is nothing more than a

sequence of characters, like a sentence, a paragraph, or a
poem.

● To create one, we need only define that sequence characters
using a text editor in the same way as we do for email.

● Type the following into your text editor and save it into a
file named HelloWorld.java:

Writing Our First Program
● Compiling a Java program – A compiler is an application that

translates programs from the Java language to a language more
suitable for executing on the computer.

● It takes a text file with the .java extension as input (your
program) and produces a file with a .class extension (the
computer-language version).

● To compile HelloWorld.java type the following text below into
the command-line:

● If you typed in the program correctly, you should see no error
messages. Otherwise, go back and make sure you typed in the
program exactly as it appears above.

Writing Our First Program
● Executing (or running) a Java program – Once you compile your

program, you can execute it.
● This is the exciting part, where the computer follows your

instructions.
● To run the HelloWorld program, type the following in the

command-line window:

● If all goes well, you should see the following response:

How Does the "Hello, World!" Program Work?
● In Java, every application begins with a class definition.
● In this particular program, HelloWorld is the name of the

class and the name of the class should match the filename in
Java.

● Next is the main method.
● Every application in Java must contain the main method.
● The Java compiler starts executing the code from the main

method, and it's mandatory in each of our executable Java
programs.

● The signature of the main method in Java is:

○ public static void main(String [] args) { ... }

How Does the "Hello, World!" Program Work?
● After that, we have a comment.
● In Java, any line starting with // is a single-line comment.
● Comments are intended for users reading the code to understand

the intent and functionality of the program.
● It is completely ignored by the Java compiler (an application

that translates Java program to Java bytecode that computer
can execute).

● Lastly, we have a print statement.
● It prints the text “Hello, World!” to standard output (your

screen).
● The text inside the quotation marks is called a String literal

in Java.
● Notice the print statement is inside the main function, which

is inside the class definition.

Creating Your Own Java Program
● For the time being, all of our programs will be just like

HelloWorld.java, except with a different sequence of
statements in main().

● The easiest way to write such a program is to:
○ Copy HelloWorld.java into a new file whose name is the

program name followed by .java
○ Replace HelloWorld with the program name everywhere
○ Replace the print statement by a sequence of statements

● Let’s make a new program called Greeting.java, that prints two
lines:
○ First: Hello, my name is [YOUR NAME HERE].
○ Second: How are you?

Types of Errors
● There are three types of errors can occur in a program:

○ Compile-time errors. These errors are caught by the system
when we compile the program, because they prevent the
compiler from doing the translation (so it issues an error
message that tries to explain why).

○ Run-time errors. These errors are caught by the system
when we execute the program, because the program tries to
perform an invalid operation (e.g., division by zero).

○ Logical errors. These errors are (hopefully) caught by the
programmer when we execute the program and it produces the
wrong answer. Bugs are the bane of a programmer's
existence. They can be subtle and very hard to find.

● One of the very first skills that you will learn is to
identify errors; one of the next will be to be sufficiently
careful when coding to avoid many of them.

Types of Errors
● Example: Let’s say I typed in the following program:

● It compiles fine, but when I execute it, I get the error
java.lang.NoSuchMethodError: main. What am I doing wrong?
What type of error is this?

String [] args and User Interactivity
● Typically, we want to provide input to our programs: data that

they can process to produce a result.
● The simplest way to provide input data is by using the “String

[] args” parameter as illustrated in UseArgument.java below:

● The “String[] args” parameter allows command-line arguments to
be passed to the program. (Through the use of an array which
you will learn more about late)

● These arguments can be accessed within the main method using
the “args” parameter.

● args[0] is the first (and in our case only) command-line
argument that we will pass to the program

● Whenever this program is executed, it reads the command-line
argument that you type after the program name and prints it
back out to the terminal as part of the message.
○ Compilation: javac UseArgument.java
○ Execution: java UseArgument [your name]

String [] args and User Interactivity

● For the last thirty years, ever since Java 1.0, the “Hello,
World” program in Java looked like our first example.

● However, in modern Java (starting with Java 21 in preview
mode, and finalized in Java 25), the main method no longer
needs to be public static, and the String[] argument is
optional

● This means that we can actually rewrite our HelloWorld.java
program to look like this now:

● You don't even need a class. Just put void main() { ... } in a
Java file.

New Java Programming (As of JDK 21 and onward)

● To use the command line, invoking a Java program has become
simpler. There is no need to compile the program. Simply call:

● In our case, we’ll say:
○ java --enable-preview HelloWorld.java

● As of now, we will have to enable preview mode until Java 25
releases in September.

● The program automatically compiles and runs, just like with
Python.

● This also works for programs that consist of multiple source
files. Just put them in the same folder and launch the file
with the main method.

New Java Programming (As of JDK 21 and onward)

Introduction to IDEs
 (Integrated Development Environments)

04

What is an IDE?
● Although as we just saw, we can write, compile, and run our

programs with a text editor and command-line interface, it may
be simpler to use an IDE.

● A Java IDE (integrated development environment) is a software
program that developers use to write and debug code more
easily.

● You are encouraged to develop programs with an IDE (Eclipse,
Netbeans, Visual Studio, etc.) because IDEs have many built-in
features that make it easier to work with large programs!

● Most Java IDEs have a:
○ code editor,
○ a set of tools for automating the building process,
○ and a debugger

● Java IDEs can increase productivity by combining capabilities
such as editing, building and testing within a single
application.

What is an IDE?
● You are free to choose one (or more!) IDE(s) that you like

best but as a suggestion some of the most frequently used
IDEs include:
○ Eclipse
○ NetBeans
○ IntelliJ IDEA Community Edition
○ DrJava
○ Visual Studio Code (with extensions for Java!)

● Since NetBeans is slightly easier to use than Eclipse,
it’s also a good choice for beginner developers.

● One of the advantages of NetBeans is that it’s part of the
Apache ecosystem, meaning built in Apache Maven
functionality for users.

Installing Platform-Independent NetBeans
on Windows/macOS

● Since we have already downloaded the JDK, we can
skip to downloading the application from
https://netbeans.apache.org/front/main/index.html

● There are many "bundles" available. I suggest you
choose the platform independent ZIP version
(e.g.,"netbeans-26-bin.zip").

● NetBeans is written in Java, hence, it is
platform independent.

● Once downloaded, unzip the downloaded file into a
directory of your choice.

Writing Your First Java Program
(Part 2 - Using the IDE)

05

Writing Java Programs in NetBeans
● Launch NetBeans by running netbeans.exe or netbeans64.exe under

"bin". If the "Start Page" appears, close it by clicking the
"cross" button next to the "Start Page" title.

● For each Java application, you need to create a "project" to keep
all the source files, classes and relevant resources:

○ From "File" menu ⇒ Choose "New Project...".
○ The "Choose Project" dialog pops up ⇒ Under "Categories",

choose "Java with Maven" ⇒ Under "Projects", choose "Java
Application" ⇒ "Next".

○ The "Name and Location" dialog pops up ⇒ Under "Project
Name", enter "FirstJavaProject" ⇒ In "Project Location",
select a suitable directory to save your works ⇒ In Group Id:
enter "com.nowhere" ⇒ Finish.

○ A Hello-world program FirstJavaProject.java is automatically
created. You can right-click on the source file ⇒ Run File.

Writing Java Programs in NetBeans
● Now we can try rewriting the programs that we wrote using the

text editor and compile and run them through our IDE.
● Right-click on package "com.nowhere.firstjavaproject" ⇒ New

⇒ Java Class ⇒ In "Class Name", enter "HelloWorld" ⇒
"Finish".

● The source file "HelloWorld.java" appears in the editor panel.
● You can now rewrite the HelloWorld.java file that we

previously wrote.
● Once you have done that, there is no need to "compile" the

source code in NetBeans explicitly, as NetBeans performs the
so-called incremental compilation (i.e., the source statement
is compiled as and when it is entered).

● To run the program, right-click anywhere in the source (or
from the "Run" menu) ⇒ Run File.

● Observe the output on the output console.

Writing Java Programs in NetBeans
● Note: You should create a NEW Java project for EACH of

your Java applications.

● Nonetheless, NetBeans allows you to keep more than one
programs in a project, which is handy for writing toy
programs (such as your tutorial exercises).

● To run a particular program, open and right-click on
the source file ⇒ Run File.

● Let’s try this by creating a new Java class for
Greeting.java, rewriting our original Greeting.java
code and running it in our IDE.

Writing Java Programs in NetBeans
● Let’s create a new Project for UseArgument
● From "File" menu ⇒ Choose "New Project...".
● The "Choose Project" dialog pops up ⇒ Under

"Categories", choose "Java with Maven" ⇒ Under
"Projects", choose "Java Application" ⇒ "Next".

● The "Name and Location" dialog pops up ⇒ Under
"Project Name", enter "UseArgument" ⇒ In "Project
Location", select a suitable directory to save your
works ⇒ In Group Id: enter "com.nowhere" ⇒ Finish.

● Just like before, A Hello-world program
UseArgument.java is automatically created.

● Delete the code and rewrite our previous
UseArgument.java code in its place

Writing Java Programs in NetBeans
● If you try running the project by pressing the green

triangle in the toolbar (which we can since we only
have one file in this particular project), you should
encounter the following error:

● This is because command-line arguments are normally
used in the command-line interface (hence the name)

● However, we can adjust for this in our IDE as well
● Right-click (on Windows) or Control-Click (on a Mac)

the project branch in the NetBeans Projects pane.
● In the resulting context menu, select Properties.

Writing Java Programs in NetBeans
● As a result, the Project Properties dialog box opens.
● On the left side of the Project Properties dialog box,

select Run.
● In the main body of the Project Properties dialog box,

make sure that the Main Class field contains the
● name of the class containing the main method.
● Then type the command-line arguments in the Arguments

field (your name).
● Click OK to dismiss the Project Properties dialog box.
● Run the program in the usual way (by clicking the green

arrow Run Project icon in the NetBeans toolbar) and you
should see the same outcome as we did in the CLI.

Overview and Next Steps
06

Overview
● As of now, you should have/be:

○ Downloaded the Java Development Kit (JDK)
○ Briefly introduced to using the command-line

Interface (CLI) to run programs by:
■ Writing simple Java programs in a text editor of

your choice
■ Compiling the program using javac
■ Executing the program using java

○ Downloaded an Integrated Development Environment
(IDE) – (we used NetBeans in this workshop but you
are free to use whichever you would like)

○ Rewrote and ran our programs using the IDE for a
brief introduction to the application

Next Steps
● This all just scratches the surface of all that you

will learning in your upcoming CISC 1115 course, but it
is definitely a good start!

● You are highly encouraged to read the following text
(one of the best intro books for Java AND available as
a free PDF online):

Allen Downey and Chris Mayfield, Think Java: How to Think
Like a Computer Scientist, 2nd Edition, Version 7.1.0,
Green Tea Press, 2020, Creative Commons License.

● In addition to whatever resources that will be required
from your respective instructors

Next Steps
● I would encourage you to get a feel of writing programs

by hand (your exams and final will all be handwritten)
before running your programs on your own computers

● This, along with tracing already written programs to
determine the output, will help you better retain
information and an understanding of how exactly your
programs work

● Furthermore, tutors are available in the Learning
Center – 1300 Boylan Hall if you ever need any study
assistance throughout the course

● Congratulations and best of luck on your CS journey! 🎉

CREDITS: This presentation template was created by
Slidesgo, and includes icons by Flaticon, and infographics

& images by Freepik

Thank You!
Presented By:
Amara Auguste

CS Tutor, Graduate Student,
and Adjunct Lecturer

Do you have any further questions?

auguste@sci.brooklyn.cuny.edu

amaraauguste.github.io

https://slidesgo.com/?utm_source=Slidesgo_template&utm_medium=referral-link&utm_campaign=SG_Credits&utm_term=Freepik
https://www.flaticon.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=sg_credits&utm_content=flaticon
https://www.freepik.com/home
mailto:auguste@sci.brooklyn.cuny.edu

